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Orientational ordering of polymers on a fluctuating flexible surface
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Arguments are presented to the effect that embedding semiflexible (wormlike) ideal polymers
into a fluctuating, flexible surface leads to an effective attractive orientational interaction between
polymer segments that precipitates an orientational ordering transition of the polymer chains on the
surface even in the case of otherwise ideal (noninteracting) chains. The orientational interaction is
analogous to the (zero order) Casimir force and is due to the energy change in surface conformational
fluctuations in the presence of embedded semiflexible chains.

PACS number(s): 68.10.—m

I. INTRODUCTION

Polymers or polymerlike structures confined to lie in
an embedding surface can appear in the context of differ-
ent membrane and/or interfacial phenomena. Partially
polymerized membranes of unsaturated amphiphiles can
sometimes make long trains of joined monomers that
behave as surface-embedded polymer chains [1]. Hy-
drophobic polymers in aqueous solutions can become em-
bedded or multiply attached to the hydrocarbon inte-
rior of membranes [1], while certain polymers can also
form monomolecular films on the water-air interface [2].
It has been observed that embedded polymers in the
case of partially polymerized membranes can promote
a wrinkling transition in membranes [3] while multiply
anchored polymers give rise to bulging and budding of
membranes [4]. In the case of interface polymer films [2]
it has been shown that they make segregated domains
even at very low (submonolayer) concentrations where
one would expect the polymers to be evenly distributed
over the surface.

This plethora of new phenomena that appear closely
connected with the fact that polymers are not only ad-
sorbed but actually embedded into a supporting surface
have recently become a focus of several theoretical stud-
ies [5]. In this contribution we try to find out what is the
influence of finite temperature, which in general leads to
shape fluctuations in flexible (membrane) surfaces or in-
terfaces, on the properties of embedded polymer chains.
In the framework of a semiflexible polymer chain model
we show that finite temperature leads to membrane fluc-
tuation generated effective orienting forces between dif-
ferent polymer segments. This interaction formally re-
sembles the nematic interaction used in some models of
the nematic ordering of long flexible chains [6] and is thus
not surprising that it leads to an orientational ordering
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transition. The interesting point is that this transition
is driven by shape fluctuations of the supporting surface
into which the polymer is embedded.

The problem we address here is related to the recent
investigations of fluctuation-induced forces between par-
ticles embedded into a lipid bilayer [7] or more gener-
ally between manifolds immersed in a correlated fluid
[8]. The existence of surface fluctuation promoted attrac-
tion between different segments of the embedded polymer
chain can also be related to the zero-order Casimir forces
(Keesom forces) between beads attached to flexible mem-
branes [9]. Other related problems include adsorption of
polymers on soft, fluctuating surfaces [10] or the collapse
of polymers on fluctuating surfaces [11].

The outline of the paper is as follows. I shall first derive
the partition function of a surface embedded semiflexible
polymer chain at zero temperature. Then I shall relax
the zero temperature constraint and derive the effective
partition function for a polymer, after the supporting
surface degrees of freedom have been integrated out. Fi-
nally an approximate solution for this effective partition
function will be given and discussed.

II. ANALYSIS

A. Semiflexible polymer chain embedded in a surface

I use a semiflexible (wormlike chain) model to describe
the polymer chain. Though the theory presented below
is formulated for a single long polymer chain, it can be
trivially generalized to a many-chain system by assuming
that the variable n has a continuous part N, describing
a single chain, and a discrete part describing different
chains a.

Let us assume that the nth bead of the polymer
has coordinates r(n) = (z(n),y(n),z(n)) and that the
quenched profile of the embedding surface can be written
in a Monge parametrization z = {(z,y) = {(p), where I
introduced the two-dimensional vector (2D) p = (z,y).
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The embedding ansatz for the polymer can thus be writ-
ten in the form

z(n) = ((p(n))- (1)

I also assume that the polymers can be described in terms
of the semiflexible chain model, where the configurational

energy is given as
2
1
30€ / ( dn? ) dn

— 14 / (#(n)? dn, (2)

BHo(r(n)) =

where if one measures all distances in terms of the seg-
ment length Be = L,, with £, being the persistence
length and N the number of segments. For a differen-
tiable curve the tangent #(n) is a unit vector, #(n)? = 1.
The partition function of a semiflexible chain embedded
in the surface ((z,y) can thus be written in a succinct
form,

2 (¢(p(n))) = / / Pr( [ o1 - (o)

x [[ 8lE(n)? — 1] x e7PHe=D (3)

The explicit incorporation of the constraint that the local
tangent has to be a unit vector permits us to perform the
functional integration in Eq. (3) over an unconstrained
set of r(n).

By integrating out the z(n) variables and introducing
an integral representation for the § function I obtain the
partition function in the form

=(¢(pm)) = [+ Po(mDAMm)

we=PH((m).C(o(m)) 4)
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where the effective configurational Hamiltonian reads

BH(p(n),{(p(n)))

N
= 18 / [B(n)? + {(p(n))2)dn
N
i / A(n)[p(n)? + E(p(n)))dn
ON
i L A(n)dn. 5)

In what follows I will leave out the last term in the above
equation which on the mean field (see below) level con-
tributes only an additive term ZAN.

It is at this point where a first major approximation is
necessary in order to proceed. Instead of enforcing the
condition ¥(n)2 = 1 locally at each point along the poly-
mer chain, we presume that it is only satisfied globally
[12], i.e., on the average

(#(m)?) = (p(n)? + (p(n))?) = 1, (6)

where the average is over all polymer configurations.
Thus the magnitude of the tangent can fluctuate lo-
cally but on the average, over the entire polymer chain,
it is fixed. Replacement of the local continuity con-
straint with a global one Eq. (6) can also be expressed
as A(n) — X = const. Thus one remains (after making
at the same time also the transformation i\ — ) with
the following form of the partition function:

= (¢(p(n)) = / / Dp(n) exp (—BH(p(n)),  (7)

where some irrelevant constant terms have been omit-
ted. The effective Hamiltonian #(p(n)) has thus been
obtained in the form

N .. N .
BH(p(n)) = LB / (B(n)? + C)Ydn + A [p(m)* + Em)?Yan

N
= ype [ (B + 52 Bg;ﬁ i(n) - By(m) ) dn
N 3C(p)3C(p)
af (p(n) e G u(m) p(n))dn+---, (®)

where we have limited ourselves to the terms of the second order in the derivatives of p(n). One can show quite
straightforwardly that the third-order terms make a vanishingly small contribution for an infinitely long chain, while
the fourth-order terms affect only the dependence of A on € (see below) [13].

B. Conformational fluctuations of the embedding surface

Going now to a nonzero temperature one has to take into account that the embedding surface is allowed to fluctuate,
taking the polymer with it on its conformational wanderings. The unrestrained partition function in this case is
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(W) = / . / Dp(n) D (p) exp (—BHT(C (p) p(n))) , )

where after introducing the Fourier transform ((p) = 3>"q ¢(Q) eiQp

N N
BH2(C (0) o) = 46c [ (m)*an + A[ p(n)dn

+3 D ¢QD(Q,Q)N(-Q) + 38D V((Q) (10)
Q.Q' Q

with
N ) ,
D(Q,Q5p(n)) = ﬂe/o dn(Q - p(n))(Q' - p(n)) €(A-Q)-pm)

N
22 [ dn(Q-p(m)(@ - () (275, (11)

V(¢(Q)) is the intrinsic deformation energy of the surface describing the energetics of the surface in the absence of
embedded polymers, I assume it to be of the form

V((Q) =V(Q) K(Q). (12)

With this ansatz one can integrate out the {(p) degrees of freedom obtaining

2(e(m) = [[ D¢ () 2 (6) pln))
= [-++[ Potm) xexp (——;ﬂe / p(n)%dn — A/O S pnydn ;Mng(q,qu(n))) (13)

with
6(Q, Qs p(n)) = (BV(Q)8(Q — Q') + D(Q, Q'’; p(n)). (14)
At this point I use the standard identity relating Tr In of an operator with a coupling integral of its resolvent
1
TG(QQip(m) = Tr [ duR,(Q Qip(n), (15)
0
where the resolvent R,(Q, Q’; p(n)) is defined as

Ru(Q, Q' p(n)) = D(Q,Q’;2(n)) (BV(Q)) " x [T+ uD(Q, Qs p(n))(BV(Q) '], (16)

with Z being the identity operator in Q space. I have omitted a term that does not depend on the coordinates p(n)
from Eq. (15). Evaluating the resolvent to the first order in pu I obtain

TrinG(Q, Qs p(n)) = TD(Q, Qs (M) (BV(Q)) " - 3Tr (D(Q, Qs p(n))(ﬁV(Q))‘1)2 oo (17)

What one remains with at the end is an effective interaction between polymer segments as if they would be confined
to a planar surface. It has the form

Q; - Qi

1 . o(n géf np: (n n np;(n)pr(n oy
3T nG(Q, Qs p(n)) = 5 / dnp;(n) py( >Z (ﬂV(Q)) “/ dnpu(m)on )Zwvw))

(2A)2 / eiQ(p(n)—p(n
i / dndn' p(n) i (n) oy (! pm(n>2(ﬂV(Q)) QAo =0

» Z Q’, Q Q- Qum —iq'em)-o) L ... | (18)

I bave limited myself to second-order terms in the derivatives of p(n) at any n (self-energy term) and to fourth-order
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terms for two different values of n (interaction term). Obviously I have thus generated a perturbation expansion in A
which is only valid for A < 1.

Introducing now the orientational correlation function between the directions of the surface normals n(p) in the
absence of polymer chains and for small surface deformations as

a / 3 1 U
(m:(0) - mu(o) = (S XEDY 5 Qi (C(@(@)) X, (19)
Q.Q’
where due to the harmonic ansatz for the configurational energy of the bare surface I have
1 kT ,
(RN = 57y 9@+ Q) (20)

thus

B (ni(p) - mi(p)) = 38Fiw(p = P) = 3 Z V(gk i e=eD, (21)

The final expression for the partition function of a surface-embedded polymer chain at finite temperature is thus

= (N) = / / Dp(n) e=BHer(p(n)5(n) (22)
with
N N
B (o), 5() = $6e [ pw?dn + A o(m)%dn
0N N
+8e [ dny(n) - 5u(m) (:0) - ma0)) + 27 [ dniy(m) - () (0:(0) - ()
N N
=3 [ [ dndn'py(n) - () - £1(0) - () () () () () - (29)

Obviously the integration over the surface degrees of freedom leads to an effective attraction between the polymer
segments, which is orientation dependent [the last term in Eq. (23)]. Formally the orientation dependent attraction
is equivalent to a nematic interaction (1 — |pa X pﬁ|2) between two polymer segments.

This attraction is similar to the fluctuation forces between particles embedded into a flexible bilayer studied recently
by Goulian et al. [7]. It has the same origin as the usual (zero order) Casimir force [14] and one could simply refer to
it as the nematic Casimir force. The fluctuations of the embedding surface play in this case the role of the fluctuations
of the electromagnetic field [15].

The dependence of this Casimir force on the orientation of the polymer segments comes essentially from the
geometric constraint for the polymer chain, i.e., #2(n) = 1, since some of the 3D configurations are excluded if the
chain is constrained to lie in the embedding 2D surface (see Fig. 1). Its spatial dependence, on the other hand, thus
the form of Fy;(|p|), stems purely from the nature of the bare surface fluctuations.

C. Effective embedded-polymer partition function and orientational ordering

Introducing now the orientational tensor o;x(p) as [16]

N
oik(p) = / dnpy(n) - pr(n) 5(p — p(n)) (24)

I can write the partition function alternatively as

N
=) = [+ DomyDow(e) 5( [ dnii(n) - um) 3 = o) - m(p)) e MBI Te)  (25)

where
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N

N
BHen(p(n). B(n), o (p)) = 3B [ (m)dn+ A [ pm)*dn

N
18 / dnipy(n) - py(n) Fix(0) + A / 4 por ik (p) Fin (0)
32 [ [ ot 00 0o (@) Fimlo = #) Fuato = p) + -+ (26)

In order to proceed from here one has to specify the form of V(Q), valid for the bare surface. To get some general
trends and estimates I shall limit myself to the following simple form of F;x(p):

Fir(pP) = 6ir F(|p|)- (27)

Also writing the § function in Eq. (25) in an integral representation I obtain the following form of the effective
Hamiltonian:

N
BH(p(n), B(n), 01x(p), $ix(p)) = BHer(p(n), B(n), oia(p)) + i / dnoy(n) i (n) i (p())
—i/dzmﬁik(P)Uik(P)
N N
= 18c[1+ F(O)]/O B(n)2dn + ,\/0 p(n)2dn
+(AF(0)) / & pTr (i (p))
B / d2pd? o' Tr(0 () ot (P)) F2(10 — )
N
+i/0 dnp;(n) - pr(n)vix(p(n)) — Z/dzp Yir(P)oix(p) (28)
and

E(N) = / - / Dp(n) Dok (p) Dbk (p) exp (~BH((n), b(n), o (p), ¥ir(p)) ) - (29)

The above partition function cannot be evaluated explicitly because ;3 (p(n)) depends on the polymer coordinates
and the functional integrals with respect to p(n) and v¥;(p(n)) cannot be separated. However, as recognized by
Gupta and Edwards [6], another approximation suggests itself. Replacing the fields o (p) and ¢,k(p) by their mean
values 7;; and 1;x, independent of p (and at the same time making the transformation 1;;, — 1/),k) one can first of
all explicitly evaluate the p(n) part of the functional integral,

/. . / Dp(n)e—§ﬂ€[1+F(0)] I B(n)2dn — MFp(n)2dn — [N dn p,(n)pi(n) Bir

/ / Dp(n) =27 TIZTZ nMiaon(=3) = =3 TIT'E Indet Muls) (30)

f

where in the limit of long chains where the sum over j can be
Min(j) = [%ﬁe [ + F(0)] (27,\31-)4 Y (277:/1)2] Sin replaced with an appropriate integration one obtains [6]
j=+oo
N2 - ("/)a + A)
+ (%) bk (31) Indet M () = & 33
" 2 ’ 2\ & ror @
Above I introduced the Rouse modes of the polymer N
chain as where o is the index of the eigenvalue of v;;. I have
=400 omitted a divergent (elastic self-energy) contribution to
_ Y @27 R 392 the above expression since it is irrelevant for subsequent
p(n) .Zw p(g) eI (32) developments. In the mean field limit one can now write
j=-

The sum of Indet M;(j) can be evaluated explicitly and

the free energy corresponding to the partition function
Eq. (29) as
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=P

)

projected configuration
actual configuration

FIG. 1. A 3D polymer configuration projected onto a (pla-
nar) surface {(z,y). Though 3D configuration (r(n)) could
be of low energy, its projection onto a surface (p(n)) causes it
to become energetically very costly. The region marked (a) is
not favored by the elastic energy and the region marked (b) is
not favored by the intersegment repulsions. Exclusion of the
(a)-type configurations is the origin of the Casimir nematic
attraction addressed here.

(Pa+A) .
,3-7'-MF—— Z mo—)] —SZUa’l/’a
+/\F(0)SZ&Q-/\ Saz) i +--, (34)

where S = [ d?p is the projected area of the surface and
I introduced the second virial coefficient a, as

as = / d2pF?(|pl)- (35)

Since the mean field free energy is a function of 3Fyr =
BFmE(A, Fa, Pa) I get the equilibrium solution by mini-
mizing it with respect to all three variables:

9(BFmr) _ e £ 1
o 4\/%[1+F(0)] Viba + X

% =0 = Po = AF(0) — 2X%a3 54 + O(52),
O(BFwr) _, _, s 1
2 4/ 1+ F(0)] Via £
- % — F(0) Za: Ga+O(G2).  (36)

In order to be consistent the above equations have been
truncated at the linear order in the field &,.
These equations look very much like the analogous
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equations obtained by Gupta and Edwards [6] for ather-
mal flexible polymer chains with orientation dependent
attraction. Solving these equations explicitly for the
three fields I obtain the following results. First of all
0« is a solution of

(G2 — 5y) | 2a22% — ()"
=y 2 8(Be)[L+ F(0)] o252

(37)

Combining the first and the last equations of Egs. (36)
one obtains

Za=

which is simply a consequence of the continuity of the
chain since

i+ FO) (38)

[1 —(#(n)]

Troa = 3 S (@) =
(50 0000

= % [1-F(0) <i)2(n)>] . (39)

These are the two equations that have to be solved con-
sistently in order to get the dependence of the eigenvalues
of the orientation tensor on the surface monomer density,
1; . There is also a boundary condition that we have to
take into account, viz., that in the case of a stiff surface
F — 0 the polymer statistics should reduce to the case
of a semiflexible chain embedded in a 2D surface. Also
the value of A should be small if the whole calculation is
to make any sense.

The appropriate solution for A can now be derived from
the first two equations of Egs. (36) and for a completely
stiff surface it assumes the form A\ = % + - --, indepen-
dent, to the lowest order, of the surface concentration of
the monomers, &¥. This property of X is conserved also
if one includes higher (fourth) -order terms into Eq. (8);
the only thing that changes is the form of the dependence
on e.

Defining the orientational order parameter S as

=18/ (5) (1£59) (40)
1+ F(0)

61’;‘9

so that Tr5, satisfies the constraint Eq. (38), one can
write Eq. (37) also in the form

5<(1_52)2__[1_+_F_£%) =o. (41)

(Be)A2az ()

This equation has two solutions, one corresponding to the
isotropic state (S = 0) and the other one corresponding
to the orientationally ordered phase of polymers (S # 0),
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2
- (1+F(®)
P ¥

V 2 2
1 (1+r@)"  (14+F(9) <1
- (ﬁe)z\zag(l—;) ? (Be)AZ ax X

separated by a continuous tgansition at the critical point
given by (8€)crit = (—1;%.—15)—
is valid only in the vicinity of the critical point, where
the general solution for A is independent of S. Away
from the critical point additional terms in the expansion
of A = A(S) would have to be taken into account. The
discussion in this contribution will not be extended to
this regime of orientational order parameter.

Close to the critical point one can thus construct a
corresponding Landau type “free energy”

g=m+§(dgggﬁ—q S24+ 18+, (43)

the minimization of which gives the transition point.
Clearly (v/Be)~! plays in this case the role of “temper-
ature.” The above expansion in S is obtained by sim-
ply putting the solution of the minimization equations
Eq. (36) back into the free energy.

Different limiting forms of the solution Eq. (42) have
to be addressed with caution. For a very flexible chain
(e — 0) the perturbation expansion in A, Eq. (23), breaks
down, because A is no longer small. It is easy to see that
in this case the surface embedding of the polymer does
not lead to orientational ordering but simply rescales the
value of the segment length. In general one can show that
the perturbation expansion in A is only valid if the elas-
tic constant of the polymer is smaller than the effective
elastic constant of the surface [13].

)
IR

(42)

. This approximate solution

III. DISCUSSION

As already stated, the existence of effective attraction
between segments of a polymer chain embedded in a flex-
ible surface at nonzero temperature is not completely un-
expected. The effective nematic interaction of the form

N N
A f dndn’ p; (n)- b (n)-py(n') By (') (Di () - T ()

X (ng(n)ny(n))

can in fact be viewed as a special type of Casimir force
between different segments of a polymer chain. It is due
to the change in the energy of conformational fluctuations
of the supporting surface (“zero point energy” [15] in the
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case of electromagnetic Casimir forces) in the presence
of embedded chains. It is analogous to the zero order
van der Waals interaction energy that is due purely to
thermodynamic fluctuations [14].

Once the presence of a nematic Casimir interaction is
derived, it naturally leads to an orientational ordering
transition. Also the order of the transition clearly fol-
lows from the fact that the effective polymer partition
function corresponds to a polymer confined to a 2D sur-
face. Nematic transition on a 2D surface is of a second
order [17]. Whether the order of the transition is pre-
served for nonideal polymers and/or higher orders in the
perturbation expansion remains to be assessed.

The nonisotropic distribution of polymer segments in
the nematic phase also raises questions regarding the ef-
fective elastic properties of a membrane dressed with em-
bedded polymers. It is clear that a nonzero S would lead
to nonisotropic elastic constants of the membrane [13].
Membrane elasticity parallel and perpendicular to the
nematic director of the polymers would be different. In
turn this intrinsic elastic anisotropy can lead to a tran-
sition between a flat membrane and a tubule [18]. One
would thus have a scenario of a flat membrane to tubule
transition promoted by, e.g., varying the concentration
of embedded polymers.

The present calculation is of importance for phenom-
ena involving interface embedded polymers. Monomolec-
ular films of poly(dimethyl siloxane) [2] show domains
of differing surface density even below the submonolayer
concentrations. Orientational ordering described in this
contribution could possibly lead to domains of different
surface density of polymers at quite small average sur-
face densities. One way of testing this mechanism is to
quench the free surface fluctuations and thus attenuate
the nematic Casimir attraction, which should prevent the
ordering of the embedded polymers.

Some of the open questions that we leave for further
discussion is whether the nature of the transition is con-
served also in higher orders of the perturbation expan-
sion in terms of ' and what is the interplay between the
repulsive (steric) interactions and the nematic Casimir
attraction. Also the consequences of coupling between
polymers and local membrane curvature [5] that has been
omitted from the above considerations would have to be
assessed in connection with its influence on the ordering
transition of the embedded polymers.
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